
www.manaraa.com

Inf Syst E-Bus Manage (2018) 16:683–720
https://doi.org/10.1007/s10257-018-0371-5

1 3

ORIGINAL ARTICLE

A model‑driven software engineering workflow and tool
architecture for servitised manufacturing

Emmanouil Ntanos1 · Gerasimos Dimitriou2 · Vassilis Bekiaris2 ·
Charalampos Vassiliou2 · Kostas Kalaboukas2 · Dimitris Askounis1

Received: 25 July 2017 / Revised: 24 January 2018 / Accepted: 2 March 2018 /
Published online: 6 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Modern manufacturing businesses increasingly engage in servitisation,
by offering advanced services along with physical products, and creating “product–
service systems”. Information Technology infrastructures, and especially software,
are a critical part of modern service provision. However, software development in
this context has not been investigated and there are no development methods or
tools specifically adapted to the task of creating software for servitised businesses
in general, or manufacturing in particular. In this paper, we define the requirements
for software engineering in servitised manufacturing. Based on these, we describe a
model-driven software engineering workflow for servitised manufacturing, support-
ing both structural and behavioural modelling of the service system. Furthermore,
we elaborate on the architecture of an appropriate model-driven Integrated Devel-
opment Environment (IDE). The proposed workflow and a prototype implementa-
tion of the IDE were evaluated in a set of industrial pilots, demonstrating improved
communication and collaboration between participants in the software engineering
process.

Keywords Product-service system · Software engineering · Model driven · Tool
integration · Integrated Development Environment · Manufacturing

 * Emmanouil Ntanos
 entanos@epu.ntua.gr

1 School of Electrical and Computer Engineering, National Technical University of Athens, 9
Iroon Polytechniou Str, 15780 Athens, Greece

2 SingularLogic Software, Al. Panagouli & Sinisioglou Strs, 14234 Athens, Greece

http://orcid.org/0000-0001-5978-8603
http://orcid.org/0000-0002-2618-5715
http://crossmark.crossref.org/dialog/?doi=10.1007/s10257-018-0371-5&domain=pdf

www.manaraa.com

684 E. Ntanos et al.

1 3

1 Introduction

Product-oriented firms are undergoing a process of “servitisation”, where physi-
cal goods and services are becoming increasingly entwined, as equally impor-
tant parts of a combined offering (Vandermerwe and Rada 1988), a strategy often
driven by competitive pressure (Neely 2008). Such “Product–Service systems”
(PSS) may include, for example, smart home devices, fuel economy assistance for
automobiles (Saarijärvi et al. 2014), remote Prognostics and Health Management
(PHM) for industrial equipment (Guillén et al. 2016; Vogl et al. 2016) and others.
Information Technologies (IT) play a crucial infrastructural role in service provi-
sion and PSSs. They enable the deployment of advanced services through capa-
bilities such as business automation, networked communication, data analytics,
and personalisation (Boehm and Thomas 2013; Lim and Kim 2015; Abramovici
and Filos 2011).

For example, a firm manufactures and sells domestic heat-pumps to resell-
ers who install them in homes and provide technical support and maintenance.
The resellers are undertaking ad-hoc repairs each time the end-customer notices
a malfunction and requests a service appointment. The manufacturing firm is
considering “servitising” its equipment offering by offering a subscription-based
equipment monitoring and maintenance service. In this scenario, the heat-pump’s
sensor module will monitor its operation and will transmit operating parameters
and fault codes to the manufacturer’s servers via the web. Once a fault (or poten-
tial fault) is detected by the server, the local reseller will be alerted via email with
an automated fault report, and will contact the end-customer to arrange a service
appointment. When on-site, the technician will retrieve diagnostics directly from
the server on a tablet, perform maintenance and submit a maintenance report or
an order for spare parts back to the central system.

Realising this service offering requires the operation and coordination of
a complex Information Technology system. The heat-pump itself must be con-
nected to the web and transmit information to a server. A decision-support system
will apply rules and heuristics to flag possible malfunctions. If faults are found,
the alert reports must be generated and mailed to the reseller network. Once at the
site, the technician will need to access technical data from the device, and submit
a report online. Billing and subscription management requires a Customer Rela-
tion Management (CRM) system.

While software is a vital part of the IT infrastructure of servitisation, its devel-
opment as part of the infrastructure of a larger Product–Service System is largely
unexplored. There is no theoretical or empirical work addressing the conditions
and problems encountered by enterprises and practitioners in software engineer-
ing for service systems. This contributes in the creation of a substantial research
gap in the areas of methods and tools for developing applications within the
framework of a “Software-Product-Service” system (Mikusz 2014) or for the
design of “informatics-based services” in manufacturing (Lim et al. 2015).

As a response to this gap, research was conducted in the framework of the
“MSEE: Manufacturing SErvice Ecosystem” project, co-financed by the

www.manaraa.com

685

1 3

A model‑driven software engineering workflow and tool…

European Commission’s 7th Framework Programme. Using an iterative approach,
the elements of a suitable workflow and tool architecture and a prototype imple-
mentation of an Integrated Development Environment (IDE) were refined, and
then evaluated in the project’s industrial pilots.

In this paper we propose a model-driven software workflow and describe the
architecture of the necessary tools for the development of software for PSS. Spe-
cifically, we examine the task of implementing software in the conditions imposed
by the business environment of servitisation. Based on this review, we propose a
suitable workflow based on the Model-Driven Service Engineering Architecture
(MDSEA), a generic model-driven framework for service system design. Further-
more, we describe the architecture of a Development Platform capable of supporting
the proposed workflow. Finally, we report on the evaluation of the workflow and a
prototype development environment in a set of industrial pilots, by developers work-
ing in and with manufacturing enterprises.

The rest of the paper is organised as follows: Sect. 2 presents current work in
the fields related to this research, and Sect. 3 describes the research methodology
used. Section 4 presents the proposed software development workflow, while Sect. 5
describes the reference architecture of a suitable development platform. The eval-
uation process of the methodology and the proposed architecture are described in
Sect. 6, while Sect. 7 concludes this paper and suggests avenues for further research.

2 Related work

The motivating problem involves addressing a contemporary and evolving busi-
ness need with methodological and technological tools from Computer Science and
Information Technology. Outlining this need, and determining the tools to address
it, require understanding the current business and technological landscape.

2.1 Service systems

A service system can be defined as a “dynamic configuration of resources for the co-
creation of value”, containing people, organisations, shared information and tech-
nology, and connected internally, as well as externally, with other service systems
(Maglio et al. 2009; Vargo et al. 2008). The collaboration of multiple business part-
ners is necessary for the delivery of advanced and complex services in servitisation
(Johnson and Mena 2008; Gao et al. 2011). The “Product-Service Systems” (PSS)
offered by modern servitised manufacturing involve a network of manufacturers,
service providers, business and technical personnel, business partners and customers
(Meier et al. 2011; Bikfalvi et al. 2013; Reim et al. 2015). Creating a new service
system requires the involvement of organisations and personnel from different back-
grounds and specialisations, both technical and non-technical (Brax and Visintin
2016).

The creation of a service system involves the parallel co-development of all its
aspects, such as organisational structures, processes, human resources, IT, physical

www.manaraa.com

686 E. Ntanos et al.

1 3

locations, or products. Its design should include the roles of people, technology,
physical facilities, equipment and processes (Goldstein et al. 2002). For example,
the provision of technical support services for new equipment requires defining the
types of services to be provided, the support processes themselves, the technicians
and other personnel implementing them, how they are organised in teams (e.g. by
location or specialty), where they will be based, the necessary infrastructures (ware-
houses, offices) and resources (spare parts, consumables). In another context, imple-
menting an application store for mobile devices requires the identification of busi-
ness processes, personnel (e.g. administrators, quality control personnel, or software
developers), physical infrastructures (e.g. offices) and IT infrastructures capable of
serving multiple mobile device users. The service system will not operate correctly
(or at all), if any of these elements is missing or is badly implemented. In the case of
Product-Service Systems, service and product functions must be integrated from the
early stages of design, and designers should consider the entities involved, the sys-
tem lifecycle, and the corresponding actor networks (Cavalieri and Pezzota 2012).

Technology-enhanced service provision also takes place in various “contexts”:
person-to-person services, self-service, multi-channel services, multiple devices and
platforms, back-stage services, and location/context aware services (Glushko 2010;
Lim et al. 2015). This implies a variety of technologies and platforms (e.g. embed-
ded systems, mobile devices, or point-of-sales terminals), and applications (such as
web sites, databases, decision support systems and financial transaction systems). In
the case of software for service systems, development cycles are driven by the evo-
lution of the corresponding service offerings due to competitive pressures. Service
software is never “finished” as long as the service system it supports keeps evolving
(Chae 2014). In this environment, the ability for prototyping and reducing “time-to-
market” is essential (Van Riel and Lievens 2004; Mietinnen et al. 2012). The need
for collaboration has been observed in several aspects of software development for
manufacturing and service systems, for example in developing the security aspects
of supply chain management software (Bartol 2014), software-intensive product
development (Pernstål et al. 2015), and the automotive industry (Lim et al. 2015).

Based on the above, it is possible to draw a set of conclusions regarding soft-
ware engineering for service provision and product-service systems. There is a need
to coordinate several stakeholders in the design and implementation of the service
system. These stakeholders include the software engineers who will be tasked to
design and implement the software supporting the provision of services, and they
will receive input from several sources (business analysts, service network partners,
and others). Additionally, they may need to leverage a large variety of technologies
depending on the way the end services are provided, thus requiring methodologies
to translate these diverse requirements into applications.

2.2 Service‑oriented systems and business process management

A common thread of modern enterprise IT for business service provision is the
application of Service-Oriented Architecture (SOA) principles, i.e. the composi-
tion of software components (services) to create complex applications (Rosen et al.

www.manaraa.com

687

1 3

A model‑driven software engineering workflow and tool…

2012; Huhns and Singh 2005; Papazoglou and Georgakopoulos 2003). Additionally,
most current practical SOA implementations are based on web services standards
and technologies (Rosen et al. 2012) such as REST, SOAP, XML, WSDL and oth-
ers. SOA-style systems, and especially service compositions, are closely associated
with Business Process Management (BPM) technologies, which aim to model busi-
ness processes as sequences of tasks (including the invocation of SOA-style soft-
ware services) using abstractions such as the Business Process Model and Notation
(BPMN) (White 2008) and others. Because of this emphasis on abstraction, model-
driven engineering approaches are suitable for the development of SOA and BPM
systems, with considerable research being done in this field (Ameller et al. 2015).

SOA and BPM aim to improve the alignment of business processes with software
by matching the elements (stakeholders, processes, entities, relations and others) of
the business domain. Additionally, the modular and “loosely-coupled” nature of ser-
vice-oriented and BPM systems means that they can be easily reconfigured to pro-
duce new complex functionality, and quickly respond to customer needs and compe-
tition. Finally, SOA and BPM are mature and widely accepted Information Systems
paradigms. Therefore, when considering the IT environment of service provision, it
is reasonable to anticipate the use of Service-Oriented Architectures and Business
Process Management technologies.

2.3 Software engineering tool integration

Software engineering is not the main value driver of a physical product-oriented
firm. In-house software development capabilities may be limited (Wallin et al. 2015)
or focused on fields other than service or enterprise applications. IT personnel may
also have limited access to appropriate tools and know-how. Often, software devel-
opment is outsourced to another, more specialised, organisation, requiring effective
communication and collaboration channels. As such, product-oriented firms may
need to acquire the proper tools for software engineering or for participating in such
a process (e.g. to collaborate with software contractors). The requirements and soft-
ware engineering workflow needs to be easy to set up, with smoothly interoperating
stages and tools, while providing flexibility for all required end-products (for exam-
ple, applications, services, service compositions, and databases). This indicates the
need for the application of “software engineering tool integration” principles.

Tool integration is the practice of integrating software development tools, in an
effort to streamline the development process. This integration may include “vertical
tools” which handle specific steps of the development workflow (such as modellers,
code editors, and compilers) and “horizontal tools” which provide support for the
overall process (such as documentation, and project/workspace management) (Was-
serman 1990; Thomas and Nejmeh 1992). Integrated Development Environments
(IDEs) represent the highest level of tool integration in software engineering. In this
context, it is reasonable to assume that software development in service systems and
servitised manufacturing would be well served by the use of integrated tools, and
especially IDEs. Integrated tools are easy to set-up and can be adapted to particular

www.manaraa.com

688 E. Ntanos et al.

1 3

domains and the technologies used for service provision. IDEs can also contain col-
laboration tools such as common repositories, dashboards, and messaging.

2.4 Product service system design methodologies and IT

PSS design techniques generally do not provide explicit support for the develop-
ment of service software. Becker et al. (2010) concluded that modelling languages
and methods that do not originate from an Information Technology background do
not capture the information systems and IT requirements of service systems. Yet,
IT-derived approaches do not capture the details of customer interaction, value cre-
ation or of the product itself. Berkovich et al. (2009) acknowledged the need for
the parallel development of the product, service and the required software but con-
cluded that there are no mature methodologies, and further research is necessary.
In 2011, the same authors presented a framework for requirements engineering for
PSS development, and noted that future research could combine elements from soft-
ware, product, service and PSS fields for a more comprehensive approach (Berko-
vich et al. 2011). In 2012, Vasantha et al. analysed a number of relatively mature
PSS design techniques in order to detect methodological gaps but none provided
specific guidance for the development of software and information systems (Vasan-
tha et al. 2012). The state-of-the-art review performed by Qu et al. (2016) listed 36
PSS design and development methodologies in cited research. However only three
of those appear to make any mention of Information and Communication Technol-
ogy aspects of the PSS.

Even if they explicitly acknowledge the information systems involved, PSS
design methodologies focus on a high-level conceptual view of the service system
design or on business aspects. IT requirements, functions or development activities
are simply mentioned but are not analysed in technical or methodological terms.
This includes several approaches: Morelli (2002) outlines the functional modelling
of a PSS, which only mentions the activities which are performed by IT infrastruc-
tures. Aurich et al. (2006) presented a systematic PSS design methodology in which
the design of the business functions may lead to requirements for data interchange,
but provided no further guidance on how these will be expressed and translated
into working systems. Maussang et al. (2007) presented a PSS design methodology
where high-level requirements are translated into “Functional Block Diagrams” of
service activities, including IT-based activities, but without discussing their trans-
formation into concrete requirements. Lindström et al. (2012) describe a process for
the development of “Functional Products” which also include hardware, software
and a service support system, but only focus on the project management decision
stages of the development. Zhao and Cai (2013) provided a draft and a metamodel
for model-driven PSS building methodology based on MDA concepts, including an
IT aspect, but without elaborating it further. A project management-level methodol-
ogy for Industrial PSS (IPS2) by Nguyen et al. (2014), simply included software as
one of many steps to build a PSS. Berkovich et al. (2014) described a PSS Require-
ment Data Model, in which software engineering requirements are mentioned, but
there is not further information on how they should be expressed, processed and

www.manaraa.com

689

1 3

A model‑driven software engineering workflow and tool…

transformed into functional applications. Stokic and Correia (2015) propose the
conceptual architecture of an engineering environment for extending manufactur-
ing products via web-based services. Its elaboration and development is identified
as one of the goals of a wider research project for service engineering research
(“DIVERSITY”—FP7 Factories of the Future, Grant 636692). A follow-up pub-
lication describing the engineering environment designed by the project includes
no mention of software development as it focuses on high-level product-lifecycle
management (Pezzotta et al. 2016). Correia et al. (2017) presented an ontology for
communication of stakeholders and tools in the development of a PSS, which con-
tains several concepts, including “software” but without further analysis of the con-
cept. The method proposed by Metzger et al. (2017) included software development,
but focused on how this process will be carried out from a project management
perspective.

There is an apparent methodological gap in integrating software development in
the product-service system engineering process. In the current literature there are
no concrete methods for integrating software development in the PSS development
process, even if the software component is recognized as an important aspect. A
notable exception is the Model-Driven Service Engineering Architecture framework
(MDSEA) described in the following section.

2.5 Model driven engineering for service systems: the MDSEA framework

In software development, Model Driven Engineering (MDE) aims to reduce the
distance between the application domain and the software under development by
using models that describe a system at various levels of abstraction and from differ-
ent viewpoints. MDE also facilitates communication between domain experts (e.g.
engineers and business analysts) and software engineers building software for the
company’s core products, services and activities (Hutchinson et al. 2011).

MDE has proven useful to organisations developing software in business domains
outside software engineering. The application of “meta-models” i.e. models about
the entities, relationships and interactions in an application domain (as opposed to a
specific application) simplifies and standardises modelling approaches. The HL7 v.3
set of healthcare informatics standards (Health Level Seven International 2017) is a
relevant example used as a foundation for research on model-driven methodologies
and tools in the healthcare domain. For instance, research in this area resulted in a
methodology to link the HL7 metamodel to standardised Unified Modelling Lan-
guage (UML) class diagrams (Martínez-Garciá et al. 2015), a development frame-
work for interoperable healthcare applications (Lopez and Blobel 2009), the applica-
tion of Model-Driven Architecture (MDA) modelling and transformation methods
for software design based on the HL7 metamodel, and the automated generation of
code for web services and service orchestrations using HL7 as part of the applica-
tion domain layer (Anzböck and Dustdar 2005).

Model-driven approaches can be used to model and create software for ser-
vice provision software. Service systems are a special case of enterprises, and
Enterprise Modelling requires the distinction between structural aspects and

www.manaraa.com

690 E. Ntanos et al.

1 3

behavioural aspects of the enterprise system (Jonkers et al. 2005). Structural
models of a domain contain entities, relations and concepts (e.g. entity classes).
Behavioural models of a domain contain actions, events and changes in the struc-
ture of the domain itself (Olivé 2007). For example, the Unified Modelling Lan-
guage (UML) (Rumbaugh et al. 2004) formally classifies its modelling constructs
as either structural or behavioural: Structural semantics bring information about
entities in the modelled domain, which may be true at a specific point in time,
while behavioural semantics make statements about how entities in the domain
change over time. (Object Management Group 2015). Also, the development of
SOA and BPM systems is well served by model-driven engineering approaches,
with considerable research being done in this field (Ameller et al. 2015).

The Model-Driven Architecture (MDA) framework, proposed by the Object
Management Group (OMG), distinguishes between different levels of modelling
abstraction for a software system. The development process moves from more
abstract, technology-independent to detailed technology-specific models, eventu-
ally leading to source code or executables.

The Model-Driven Service Engineering Architecture (MDSEA) framework
aims for a holistic solution to the service system design problem by applying con-
cepts from MDA (Chen et al. 2012; Ducq et al. 2012; Agostinho et al. 2014). As
such, MDSEA distinguishes three modelling levels, analogous to the MDA mod-
elling levels:

• Business Service Models (BSM) describe the business functions, concepts,
entities and attributes of the service system, such as “service”, “product”,
“stakeholders”, “organisation” and “performance indicator”. The BSM uses
techniques and concepts from the field of Enterprise Modelling such as the
“Graphs with Results and Actions Inter-related” (GRAI) modelling approach
(Chen et al. 2012; Aguilar-Savén 2004).

• Technology-Independent Models (TIM) describe the implementation of the
service system at an abstract level i.e. without specific implementation details.
At the TIM stage, modelling is separated in three parallel tracks, each repre-
senting a complementary aspect of the service system:

• Information Technology: The information system and IT processes imple-
menting the services.

• Organisation/Human Resources: The personnel and business processes
implementing the service system, such as roles and generic procedures.

• • Physical Means: The physical infrastructures required, such as the neces-
sary buildings and equipment.

• Technology-Specific Models (TSM) are service system models in the three
afore-mentioned tracks, with additional implementation information. For
example, organisational models may now include specific personnel and busi-
ness rules. Physical means models may describe specific configurations and
models of equipment. In the IT track, the information system models are now
adapted to the target technologies which will be used to implement the service
system.

www.manaraa.com

691

1 3

A model‑driven software engineering workflow and tool…

The IT track corresponds neatly to the problem of developing software for service
systems. The final stages of the IT track involve the transformation of TIM-level mod-
els of the IT components of the service system into TSM-level models and executables,
and are analogous to the PIM-PSM-executable stages of MDA. This means that MDA-
based software engineering processes can be applied to build service software within
the MDSEA framework, as part of a unified service engineering process.

Previous work on MDSEA suggested the use of complementary “structural” and
“behavioural” modelling approaches for MDSEA’s IT-track TIM level. When the ser-
vice system is described in “structural” terms (i.e. stakeholders, components, data and
other elements, and their relations), these can be mapped to IT-domain entities, such
as interfaces, data structures and object-oriented software. On the other hand, when
the service system is modelled in “behavioural” terms (i.e. inputs, outputs, processes,
decision branches and others), it’s possible to create software directly implementing
this behaviour, like business process scripts, service compositions and applications.
Specifically, Ducq et al. (2012) suggested the use of structural diagrams from the Uni-
fied Modelling Language (UML) for modelling the service system’s enterprise appli-
cations and their associated data, and BPMN (Business Process Model and Notation)
(White 2008) for describing its processes. For the TSM level, they proposed the use
of UML diagrams for applications and data and BPEL for business processes (to be
executed by a compatible BPM engine in the service system’s IT infrastructure). More
recently, Ducq et al. (2014) focused on BPMN 2.0 as the TIM-level output of the pro-
cess, including IT aspects, citing its interoperability with BPM platforms, and ability
to represent human and technical resources. Finally, when considering a practical soft-
ware tool for service engineering using MDSEA, both modelling approaches have been
proposed for the TIM-level: UML Class diagrams for IT artefacts and BPMN 2.0 for
detailed business processes (Bazoun et al. 2014; Boyé and Bazoun 2014).

MDSEA presents several advantages as a starting point for software development
for servitised manufacturing. Being derived from MDA, relevant concepts, tools and
processes are applicable in the IT track. It is unique in considering software develop-
ment in the larger context of complex service systems, alongside with organisational
and technical aspects. The MDSEA framework does not constrain the methods and
tools which can be used to implement it. This facilitates adaptations to various specific
applications and domains, as well as the use of structural and behavioural modelling.
The framework encourages the alignment of business goals and processes by model-
ling the service system as a whole in the initial design stages which then separates into
organisational, physical and IT tracks. Finally, business, technical and other stakehold-
ers participate in the design process, through common modelling abstractions.

2.6 Requirements for methods and tools for software development for service
provision in manufacturing

Based on the information in the previous sections, we can begin to draw conclu-
sions about the business and technological environment of software engineering
for service provision. Such activities will take place in the context of the develop-
ment of a larger, multi-faceted system. Information about the application domain,

www.manaraa.com

692 E. Ntanos et al.

1 3

business processes and the overall solution must be clearly defined and communi-
cated to the development team by domain experts. SOA and BPM technologies will
be applied, and a model-driven approach (such as MDSEA) would facilitate inter-
team collaboration, while maintaining consistency across platforms (Francese et al.
2015). The approach will need to combine both structural and behavioural aspects.
Finally, these tools will need to be integrated and, very likely, interoperable with the
IT infrastructure of the service provision system, extending the benefits of tool inte-
gration to testing, staging and deployment of applications.

These conclusions can be distilled into five requirements for a software engineer-
ing methodology and toolset aimed at product-service systems (Table 1).

2.7 Model‑driven software development methodologies for SOA and BPM
with tool support

The fields of MDE, SOA, BPM and Tool Integration may contribute towards defin-
ing a suitable process and designing the necessary tools. For this reason, we review
relevant research efforts which combine all four elements to provide methodological
and tool support for application development.

Work within the Eclipse framework (Eclipse Foundation 2005) has resulted in
several tools and open source solutions for model-driven software engineering,
SOA, and BPM. State-of-the art, general-purpose commercial tools include IBM’s
Rational Software Architect (Leroux et al. 2006), Sparx Enterprise Architect (Sparx
Systems 2016) and others. All these environments are geared towards the general
development of software systems, and several of the tools reviewed here use them as
their technology foundation.

In the relevant research literature, most approaches and their tools employ either
a structural or a behavioural modelling style, with very few exceptions. MDA-based
behavioural modelling approaches include several methodologies and their associ-
ated toolsets. The Sensoria Development Approach (SDA) and corresponding Senso-
ria Development Environment (SDE) support the creation of SOA systems (Wirsing

Table 1 Requirements for a model-driven methodology and development environment for servitised
manufacturing

1. Servitisation requires the development of a wide range of service provision applications (e.g. account-
ing, data collection, or web pages), therefore the necessary tools should not be limited to a single
application domain

2. Modelling a service system benefits from using the complementary approaches of structural and
behavioural modelling for software production, so both approaches should be supported

3. Integrated development environments for software development should be preferred over discrete tool
chains, as the former improve productivity and are easier to manage

4. Since (MDA-based) MDSEA is the only model-driven service-system development methodology
with concrete support for software engineering, candidate approaches should be compatible with it by
implementing MDA transformations

5. The usefulness of modelling and development environments for service systems is greatly increased
if they have some type of integration with the service system runtime environment and can deploy
applications quickly

www.manaraa.com

693

1 3

A model‑driven software engineering workflow and tool…

et al. 2008). ContextServ, is a platform specialising on context-aware web services
(Sheng et al. 2009). The integration of the Service-Oriented Development Method
(SOD-M) (De Castro et al. 2009) and the DENEB business process execution platform
(Fabra et al. 2011) resulted in a framework for the analysis, design and execution of
generic business processes (Fabra et al. 2012). MoDAR (Model-driven Development
of Dynamically Adaptive Service-Oriented Systems with Aspects and Rules) models
business processes with a custom toolkit targeting a specialised runtime environment
(Yu et al. 2015). The CHOReOS methodology is another behavioural approach, but
does not directly reference the MDA framework (Autili et al. 2013). An Integrated
Development and Runtime Environment (IDRE), based on Eclipse, was implemented
for CHOReOS (Ben Hamida et al. 2012).

MDA-based approaches are also present in the structural modelling camp. The
MPOWER research project investigated the use of model-driven methods for the devel-
opment of services for home-care applications, and relied on the HL7 framework for
healthcare interoperability (Walderhaug et al. 2007). Aho et al. (2009) developed an
MDA-based toolchain for web services, combining web service and database develop-
ment. Non-MDA approaches include the IBM Service Oriented Modelling and Archi-
tecture (SOMA) aiming for end-to-end support for a SOA model-driven development
process. (Bercovici et al. 2008). Haase and Nagl (2009, 2011) proposed a model-driven
methodology and tool for the creation of service-oriented architectures as middleware
for the integration of heterogeneous applications.

Both structural and behavioural approaches are present in WebRatio 5, a tool using
a Model-Driven approach for the design of generic Web applications (Acerbis et al.
2007, 2008). Both structural and behavioural elements appear in the course of the
A-MUSE methodology model transformations (Daniele et al. 2009a, b).

Using the criteria listed in Table 1, it is possible to evaluate whether the methods
and tools reviewed are consistent with the requirements for software development in
servitised manufacturing. The evaluation is summarised in Table 2.

The evaluation reveals that there is no single platform which can cover all six
requirements. Several are focused on specific application domains and, thus, are not
flexible enough to apply to different service fields. Overall, generic platforms such as
Eclipse and Rational Software Architect need extra work to set up structural/behav-
ioural workflows, e.g. by collecting the necessary modelling and coding plugins, and
setting up the necessary interfaces. However, most other approaches are focusing on
either the structural or the behavioural perspective. There are some approaches that put
emphasis on the modelling aspects and do not provide a development environment.
Many approaches do not support MDA-style modelling workflows, and as a result, are
not compatible with the MDSEA service engineering approach. Finally, while some
approaches can be integrated with production environments (i.e. service system IT
infrastructures), others require additional adaptation, or are simply not designed with
service system integration in mind.

www.manaraa.com

694 E. Ntanos et al.

1 3

3 Research methodology

Significant part of the research presented here took place in the framework of
the “MSEE: Manufacturing SErvice Ecosystem” FP7 project. The project plan
encouraged an iterative research approach for its various interrelated research
tracks, including the work presented here. Therefore, the work was organised in
the following phases:

Initial definition of requirements and draft architecture based on the charac-
teristics of software development in servitised manufacturing, the research team
made a first attempt to identify the requirements and use cases of the workflow
and to produce a draft architecture of the IDE.

Initial prototype an initial prototype of the IDE was developed, implement-
ing an early version of the software development workflow. Preliminary testing
and feedback from the project partners underlined the need for revisions to the
requirements, the user workflow, the architecture and the technologies used.

Revised requirements and architecture based on the experience from testing
the first prototype, the requirements, workflow and architecture were updated.

Revised prototype based on the new specifications, a finalised prototype was
developed and deployed.

Piloting and evaluation the prototype was deployed and was tested during
the project pilots, revolving around the design development of product-service

Table 2 Evaluation of model-driven, SOA-oriented development frameworks with tool support

GSPA Generic Service Provision Applications, SWS Structural Workflow Support, BWS Behavioural
Workflow Support, IDE Integrated Development Environment, MSEA-C MDA-based: MDSEA-Compat-
ible, SSI Service Runtime Integration
●: applies, ○: requires additional components and/or adaptation, –: not applicable

Platform GSPA SWS BWS IDE MDSEA-C SRI

Eclipse ● ○ ○ ● ○ ○
Rational software architect ● ○ ○ ● ○ ●
Sparx ● ● ● ○ ● ○
A-MUSE – ● ● – ● –
STRIDE – – ● ● ○ ●
MPOWER – ● – – ● ●
WebRatio 5 – ● ● ● ○ ●
SDA ● – ● ● ● –
SOMA ● ● – ● ○ –
ContextServ – – ● ● ● ●
Aho, et al. (2009) ● ● – – ● –
Haase and Nagl (2009, 2011) – ● – – ○ –
SOD-M/DENEB ● – ● ● ● ●
CHOReOS ● – ● ● ○ ●
MoDAR ● – ● ● ● ●

www.manaraa.com

695

1 3

A model‑driven software engineering workflow and tool…

systems for manufacturing. At the end of the project pilots, software engineers
were asked to assess the usefulness and impact of the workflow and the prototype
IDE.

4 Model‑driven software engineering workflow for product‑service
systems

In this section, we present a model driven software engineering workflow, based on
model-driven principles, and as an elaboration of the final stages of the MDSEA IT
track.

4.1 Generic process

The proposed methodology is based on a TIM-to-TSM transformation in the
MDSEA “IT track”. The transformation is based on MDA-style “model mapping”
i.e. correlating elements of a more abstract model to elements in a less abstract one.
This includes both model-type (application of element-to-element rules) and model-
instance (manual mapping and model enrichment) mapping (Mukerji and Miller
2003; Dickerson and Mavris 2009; Osis and Asnina 2010). The methodology uses
both of these approaches, eventually leading to the creation of executable artefacts,
as seen in Fig. 1.

The generic process includes the following steps:

• Start: The TIM model is received by the developer. The model has been pro-
duced in previous steps of the MDSEA process and corresponds to a high-level
description of the service IT system structure or behaviour.

• The TIM model is edited by the developer.

TIM
Model

TSM
Model

Target Technology Model

Model
Type

Mapping

Model
Instance
Mapping

Source code or other
executable artefacts

Generation
and Editing

Model
Editing

Development
Artefact

Activity

Workflow

Information
input

Start

Fig. 1 Generic TIM model to code process

www.manaraa.com

696 E. Ntanos et al.

1 3

• Afterwards, the TIM-to TSM Model mapping process takes place using a com-
bination of model-type and model-instance mapping. The process can be manual
(performed by the developers themselves) or automated, to a degree. Both types
of mapping are informed by the “Target Technology Model”, i.e. the specifics of
the technologies which will implement the IT system.

• The mapping process produces a TSM model based on the input TIM model.
• A generator produces code or other executables (of various levels of complete-

ness), which may also be edited by the developers, debugged and prepared for
deployment. Again, the production and preparation of executables is informed by
the “Target Technology Model”

• The process results in completed executable artefacts, ready to be deployed to the
target platform.

On the input side of the workflow, both UML class diagrams and BPMN 2.0 pro-
cess diagrams need to be considered, based on previous work on MDSEA, and their
inherent complementarity. On the output side, the resulting software is expected to
operate in the framework of a SOA system with BPM elements, meaning that the
process should be able to support the development of services (mainly web services)
and service compositions. For added flexibility it should also support stand-alone
software, development without model input (including outside of the MDSEA pro-
cess), and the creation of intermediate products, such as code and models.

The generic model-driven workflow can be applied to each type of input and
potential output, as described in Table 3, giving rise to a structural and a behavioural
version of the generic workflow.

The combination of both approaches can support the development of complete
SOA-based systems. The structural approach can be used to define specific actors
or entities in the application domain, and to develop individual “atomic” services.
Once these become available, developers can use the behavioural approach to model

Table 3 Design Inputs and
expected outputs

Design input Output

Structural descriptions: UML class dia-
grams

Object-oriented appli-
cation code:

 Stand-alone applica-
tions

 Web services
 Service compositions

(with locally devel-
oped or external
services)

Behavioural descriptions: BPMN process
diagrams

Executable process
scripts:

 Stand-alone pro-
cesses

 Service compositions
(with locally devel-
oped or external
services)

www.manaraa.com

697

1 3

A model‑driven software engineering workflow and tool…

complex interactions between these services, and deploy these processes to service
orchestration engines.

4.2 Structural workflow

In the structural workflow, technology-independent UML class diagrams (TIM mod-
els) are used to generate UML Class diagrams corresponding to an application in
an object-oriented language (Technology-Specific Models—TSM). TIM UML class
diagrams describe entities (for example documents, devices, and stakeholders) and
relations in the application domain using object-oriented concepts, such as classes,
components, attributes, operations, or generalisations. Despite the lack of algorith-
mic information (Neubauer et al. 2014), there is enough to model the basic structure
of an object-oriented application.

The TSM model can be generated from the TIM model using a combination of
model-type and model-instance mapping. Model-type mapping is applied to UML
elements which, in turn, can be correlated with counterparts in the technology-spe-
cific domain because of their specific “type”. In this case, it possible to automate
this process using specific transformation rules. For example, UML classes, rela-
tionships and methods can be mapped to the corresponding Java concepts. Some
technology-specific information, however, cannot be inserted in the model in this
way. For example, attributes in the TIM model may be without data types, or with
inappropriate ones for the target language. Model-instance mapping must be applied
in this case. “Instances” of specific elements will require special treatment depend-
ing on the technology and application requirements. For example, the “price” attrib-
ute of a class will need to have a data type appropriate to the target language and the
accuracy required by the end application. In this case, the developer will annotate
this attribute with a specific “mark” i.e. a technology-specific semantic, indicating
the proper transformation.

The result of this process is an “enriched” UML class diagram, annotated with
technology-derived marks i.e. a Platform-Specific Model of the software under
development, as illustrated in the example in Fig. 2. Following up from the example
presented in the introduction, in this case the developer is focusing on a structural
model of a part of the service system (specifically the representation of the installed
equipment, i.e. heat pumps). The developer enriched the Technology-Independent
model with specific java-derived semantics to prepare a Technology-Specific model
targeting the Java language.

In practice, developers will further manipulate the domain model beyond this
mapping process. UML structures may not correspond exactly to valid constructs
in the target language: for example, Java restricts multiple inheritance to interfaces,
which is not a constraint in a technology-agnostic UML diagram, while on the other
hand, C ++ doesn’t. Beyond these mismatches, building behavioural and effective
software requires adapting the model to the specific technological implementation
(for example, by adding classes, methods, and fields not included in the technology-
agnostic representation), re-using existing assets not referenced by the source model,
and other activities.

www.manaraa.com

698 E. Ntanos et al.

1 3

<<javaBean>>
InstalledEquipment

+ svc_contract_no: int [1]
+ installation_date: Date [1]

<<javaBean>>
HeatPump

+ serial_no: int [1]
+ running: Boolean[1]
+ compr_modulation: int[1]
+ report_status()

<<javaBean>>
SensorModule

+ inter_temp: BigDecimal [1]
+ exter_temp: BigDecimal [1]
+ flow_temp: BigDecimal [1]
+ read_sensors()

Int_sensors 1…*

Host_HP 1

InstalledEquipment
+ svc_contract_no: Undefined
+ installation_date: Undefined

HeatPump
+ serial_no: Undefined
+ running: Undefined
+ compr_modulation: Undefined
+ report_status()

SensorModule
+ inter_temp: BigDecimal [1]
+ exter_temp: BigDecimal [1]
+ flow_temp: BigDecimal [1]
+ read_sensors()

Int_sensors 1…*

Host_HP 1

Technology
mapping and

model enrichment
process

Technology-agnostic TIM Model Java-specific TSM Model

Fig. 2 Example of TIM to Java-specific TSM mapping

Fig. 3 Example of a Java code template generated from a TSM model

www.manaraa.com

699

1 3

A model‑driven software engineering workflow and tool…

By the end of this process, the TSM model will contain enough information
to automatically generate a set of object-oriented code templates for all classes
it contains, with appropriate variable and method declarations, and element rela-
tions, as seen in Fig. 3.

In Fig. 3, Java code has been generated for the HeatPump class, and the devel-
oper can now, for example, populate the template with code for reporting the sta-
tus of the pump: the report status method. From this point on, the developers will
implement software applications by populating the code templates, testing and
debugging the resulting code.

4.3 Behavioural workflow

The generic process uses BPMN 2.0 input to produce executable scripts for
Workflow Management Systems (Georgakopoulos et al. 1995), a large proportion
of which can execute BPMN 2.0 process scripts (Skouradaki et al. 2015). This
way, developers working strictly within the framework of BPMN 2.0, can pro-
duce executable business processes without translating them into other execution
languages (e.g. BPEL) while maintaining a simple, consistent workflow.

As received from the MDSEA process, TIM BPMN 2.0 models only contain
information about the business process itself, and are not adapted to any particu-
lar execution engine, (thus corresponding to MDA Platform-Independent Mod-
els). During this workflow, the users will manipulate the TIM model, in order to
produce a TSM model to be executed within the framework of the manufacturing
service system’s IT infrastructure. The work required at this stage will depend on
factors such as the business requirements, the target technology, and the maturity
of the TIM model, and may include a combination of:

• Model editing: implementation and elaboration of functionality described in
relatively abstract terms in the input model, improvements to workflow, usa-
bility, and consistency, the re-use of existing assets, and further BPMN ele-
ments (e.g. tasks, messaging, or flow control)

• Addition of process execution elements: These may include (among others),
variables passing data during process execution, scripts, business rules and
engine-specific elements such as e-mail tasks, and task assignments.

• Addition of service invocations and functionality by external systems: Ser-
vices in a SOA infrastructure can be invoked during the execution of the
business processes by most available BPM engines. In this case, developers
include, for example, “web service tasks” which invoke, pass arguments and
receive results from available services. This enables the creation of SOA-style
service compositions.

• Addition of complex functionality via application code: Various engines allow
developers to describe complex behaviour, which cannot be effectively cap-
tured by BPMN 2.0 semantics through the addition of additional application
code.

www.manaraa.com

700 E. Ntanos et al.

1 3

• Addition of User Interaction (UI) elements: Developers can define UI elements,
such as forms and menus associated with tasks, and allow user interaction during
the business process.

The result of this process is another BPMN 2.0 model of the business process
containing information enabling its execution from the target BPM engine, as illus-
trated in Fig. 4.

Both TIM and TSM models are expressed as BPMN 2.0, with the TSM model
including technology-specific extensions. Model-type mapping between the two
model types is limited to the trivial correspondence of BPMN elements (e.g. tasks
and events) Model-instance mapping involves the addition of various engine-derived
semantics (such as tasks, workflows, and code), corresponding to an MDA PIM-to-
PSM transformation.

In the example in Fig. 4, the business process involves the identification of
faults in the installed equipment serviced by the manufacturer. The TIM is only
concerned with high-level aspects of the process. The developer will have to
enrich and update the model according to the technology infrastructure provided
by the service system, i.e. the business process engine, the available web ser-
vices etc. Here, the developer fleshes out the process: checking for faults means
invoking the relevant web service to read the operating parameters of the existing
pumps, and the application of a set of business rules for determining if a fault was
found. If faults are found, the service department must be notified. The developer

Fig. 4 Example of BPMN TIM to TSM business process model transformation via mapping and enrich-
ment

www.manaraa.com

701

1 3

A model‑driven software engineering workflow and tool…

adds code to for the preparation of a fault list, invokes the process engine mailer
to send it to the service department and updates the equipment database through
an existing web service.

5 Development environment architecture

In this section, we present the proposed development environment architecture.
First, we discuss the system context of the proposed architecture, since it defines
its interfaces with other systems. Next, we describe the elements of the proposed
architecture, and finally we show how these elements work together to produce
the desired functionality.

5.1 Overview and system context

The Generic Service Development Platform (GSDP) is a model-driven develop-
ment environment, supporting the workflow described in the previous section.
The inputs of the GSDP are TIM (UML and BPMN) models from earlier stages
of the MDSEA process. The outputs of the GSDP are applications, services, ser-
vice compositions, executable business processes and intermediate products, such
as models and code fragments.

Web Service Management
Infrastructure

Generic Service
Development

Platform

TIM Users /
Modelling

Tools

TIM Models
(Web services,

business
processes)

Web Service
Registration /

Service Discovery

Web Service
Deployment

Process Execution
Engine

Business Process
Deployment

Service invocation
during Business

Process execution

Deployment
Server

Service invocation
and monitoring

End Users

Start

Service IT system
components

Interactions of the GSDP with
other IT system components

Interactions between other
IT system components

Service
provision

Fig. 5 The GSDP context and interactions

www.manaraa.com

702 E. Ntanos et al.

1 3

As seen in Fig. 5, the GSDP exists within the IT framework of the product–ser-
vice system. Specifically:

• Start: The GSDP TIM input (models for web services and business processes)
come from designers using UML and BPMN modelling tools in the previous
steps of the MDSEA process.

• The TIM-TSM-executable transformation takes place in the Generic Service
Development Platform, as described in the previous sections.

• Developed web services are deployed to the Deployment Servers.
• When a web service is deployed to the servers, it is also registered with the Web

Service Management Infrastructure of the service IT system. The registration
includes metadata about the web service, the service end-point, and other infor-
mation required for its invocation.

• Also, the GSDP re-uses services in the development of service compositions.
This requires the discovery and retrieval of information (such as service descrip-
tions) of available Web services. Information for service discovery is retrieved
from the Web service management infrastructure of the service IT system.

• Executable business processes and service compositions are deployed to a Pro-
cess Execution Engine.

• The Process Execution Engine performs the business processes and provides
business services to the service system’s end users (e.g. manufacturers, consum-
ers, and network partners).

• During the execution of business processes, the Process Execution Engine
invokes services registered with the Web Service Management Infrastructure.
The Web Service Management Infrastructure monitors the operation of the IT
system web services and operates as an intermediary between the web-service
deployment servers and the Process Execution Engine.

5.2 GSDP IDE and model repository server architecture

Broy et al. (2010) have examined the requirements or architectural elements of an
IDE supporting a model-driven workflow. According to the authors, significant
issues in model driven development environments are combining different model
views in a single workflow, and providing sufficient integration of the necessary
tools (e.g. reducing manual transformation and input). Additionally, the neces-
sary elements of the architecture of an “Integrated Model Engineering Environ-
ment” were briefly enumerated: (1) a common model repository, (2) model edit-
ing tools, (3) tools for model analysis and the synthesis of new artefacts (new
models, code, text descriptions among others) and (4) a workflow engine guiding
engineers through the development process. A common model repository has also
been considered necessary by Haberl et al. (2010) for a model driven workflow
and toolset. This central repository would reduce redundancy and inconsistency
in collaborative development, and would support change and configuration man-
agement. Almeida et al. (2007), while examining the architectural options for

www.manaraa.com

703

1 3

A model‑driven software engineering workflow and tool…

a model driven service engineering environment, also emphasised the need for
integration with the service provision runtime infrastructure (e.g. its execution
engine or its service runtime repository).

The design of the GSDP IDE architecture is based on the extension and fur-
ther elaboration of this theoretical work into a coherent architectural framework.
The proposed IDE architecture supports the dual development flows (structural
and behavioural) of the proposed methodology in a multi-user collaborative
environment. Additionally, it foresees the inclusion of the software development
tools in an expanded service engineering workflow, through interoperability with
higher-level modelling tools (i.e. the design stages of the service system) and

GSDP Behavioural Workflow
Components

GSDP Interoperability Components

GSDP Structural Workflow Components

Graphical User Interface and User Workspace Management

Code
Generator

Web service
Management

Model
Repository

Server

UML Design
and

Enrichment
Tools

SOA Service
Management
Infrastructure

Code
Development

Tools

MR Interop.
Wizards

SOA Service
Management

Integration

BPM Runtime
Environment /

Execution
Engine

Generic Service Development Platform IDE

BPM
Integration

Model Rep.
Client API

Model Rep.
View

TIM Modelling

Model Rep.
Client API

Model Rep.
View Service

Depl.
Server

Service
Deployment
Interaction

Service
Registration /

Service
Discovery

Business Process
Deployment
Interaction

Repository
Client API

Access

Repository
Access

GSDP
User

Repository
Access

BPMN
Design and
Enrichment

Tool

Business
Process

Deployment
Staging

Service
invocation

and

Service invocation
during Business

Process execution

monitoring

Fig. 6 Generic Service Development Platform architecture

www.manaraa.com

704 E. Ntanos et al.

1 3

the runtime environment of the resulting applications (i.e. the service provision
infrastructures).

The proposed GSDP IDE architecture contains the bulk of the GSDP’s function-
ality, and is a separate instance for each user of the GSDP. It is designed as a collec-
tion of tools within a common framework providing platform, presentation, control,
data and process integration, a graphical user interface and a workspace containing
the tools and artefacts used in the development process (models, code, etc.). The
architecture is illustrated in Fig. 6.

The GSDP architecture is composed of the following elements:

• Core components, which support the main functions of the GSDP IDE, i.e.
model editing, mapping, enrichment, code generation and development. These
are organised according to the two supported workflows: Structural and Behav-
ioural.

• Interoperability Components, connecting the GSDP IDE with external systems,
i.e. the Model Repository Server and elements of the manufacturing service sys-
tem’s IT infrastructure.

• The Model Repository server is a common warehouse for models and other
development assets. A single MR Server instance is accessed by multiple GSDP
users, as well as designers providing TIM-level models as input for the GSDP
workflows (i.e. MDSEA TIM-level models of IT-track product–service system
components).

5.2.1 Structural workflow components

The structural workflow components include the following:

• UML design and enrichment tool Used for editing and mapping technology-
agnostic to technology-specific class diagrams. It includes UML editing func-
tionality and the ability to import and apply UML profiles to models.

• Code generator Produces class templates from the technology-specific UML
class diagram, using a set of transformation rules targeting a specific object-ori-
ented language.

• Code development tools Standard tools for software development, including text
editors, compilers, debuggers, and others.

The results of this process may include intermediate products (such as models
and code fragments), stand-alone applications or web services which can be stored
in the Model Repository.

5.2.2 Behavioural workflow components

The behavioural workflow components include the following:

www.manaraa.com

705

1 3

A model‑driven software engineering workflow and tool…

• BPMN Design and enrichment tool Used for editing BPMN process diagrams,
and enriching them with technology-specific semantics. The TIM models can be
imported from the Model Repository or created entirely in this environment.

• Business Process Deployment Staging Before being deployed to the execution
engine, the business process may need to be further processed or packaged.

Intermediate products (e.g. business process diagrams, executable processes)
can be exported to the Model Repository, while the finished executable processes
are deployed to the BPM engine of the manufacturing service IT infrastructure.

5.2.3 Integration with the manufacturing service system IT framework

A large part of the expected added value of the GSDP lies in its integration with
the IT infrastructure of the manufacturing service system. Its inputs come from
modelling tools used by service designers and its outputs (web services, execut-
able business processes) are deployed in the manufacturing service system’s IT
infrastructures. Collaboration between stakeholders (e.g. domain experts, busi-
ness analysts and software developers) requires access to common resources.
Also, creating service compositions requires the discovery and referencing of
available services. Finally, its finished products are deployed to their runtime
environment (servers and the BPM engines running on them). This integration is
supported by a set of interoperability components cited below.

5.2.3.1 Model Repository Server and access components The Generic Ser-
vice Development platform uses the Model Repository for storing, searching and
retrieving models as well as other software assets. Multiple IDE instances commu-
nicate with a central Model Repository Server through a built-in interoperability
stack, as illustrated in Fig. 7.

The Model Repository functionality is contained in the following elements:

• The Model Repository Server Acts as a centralised “single point of truth”
repository for model and software resources (e.g. code fragments, or text and
documentation).

• The Model Repository Client API Provides an API over which other compo-
nents in the GSDP IDE can communicate with the Model Repository Server.

• The Model Repository View The MR View component allows end users to
interact with the Model Repository Server via a Graphical User Interface.

• The Model Repository Interoperability Wizards UI-intensive components in
GSDP instances which perform various specialised operations on the Model
Repository (e.g. Import, Export, and Search).

5.2.3.2 SOA Service Management Integration The GSDP is used to develop web
services for a manufacturing service system operating on SOA principles support-

www.manaraa.com

706 E. Ntanos et al.

1 3

ing service registration and discovery. Here, communication with the GSDP is
bi-directional and occurs in two cases:

• Service registration once a new web service is deployed to its corresponding
server, the component automates the task of registering the services.

• Service discovery Enables searching for and retrieving information on available
services (such as invocation method, parameter list and service end-point) during
development.

5.2.3.3 Web service/Business Process Management Tasks related to web service
and Business Process Management include deployment to a server, testing, generat-
ing and editing service descriptions, generating client code, and others.

Fig. 7 Model repository access and operations components

www.manaraa.com

707

1 3

A model‑driven software engineering workflow and tool…

5.3 Implementing the proposed workflow

The proposed architecture is designed to support both the structural and behav-
ioural workflows, handle user interaction and provide interoperability with
the other elements of the service provision IT system. The following sections
describe how the architectural components work together in the structural (web
service) and behavioural (business process) workflows.

GSDP Behavioural Workflow
Components

GSDP Interoperability Components

GSDP Structural Workflow Components

Graphical User Interface and User Workspace Management

Code
Generator

Web service
Management

Model
Repository

Server

UML Design
and

Enrichment
Tools

SOA Service
Management
Infrastructure

Code
Development

Tools

MR Interop.
Wizards

SOA Service
Management

Integration

BPM Runtime
Environment /

Execution
Engine

Generic Service Development Platform IDE

BPM
Integration

Model Rep.
Client API

Model Rep.
View

TIM Modelling

Model Rep.
Client API

Model Rep.
View Service

Depl.
Server

Service
Deployment
Interaction

Service
Registration /

Service
Discovery

Business Process
Deployment
Interaction

Repository
Client API

Access

Repository
Access

GSDP
User

Repository
Access

BPMN
Design and
Enrichment

Tool

Business
Process

Deployment
Staging

12

3

4

5

6

Service invocation
during Business

Process execution

Service
invocation

and
monitoring

Fig. 8 Structural workflow as implemented by the components of the GSDP architecture, organised in
steps

www.manaraa.com

708 E. Ntanos et al.

1 3

5.3.1 Structural workflow

In brief, the structural workflow aims to generate component web services which
can be used as stand-alone services or as part of service compositions (i.e. business
processes).

As illustrated in Fig. 8, the architecture components work together to implement
the proposed workflow:

Step 1 TIM structural modelling takes place outside the GSDP, by service design-
ers, business analysts and other users. These users are provided with interoperability
components for the Model Repository either as standalone tools or as part of their
design environment.

Step 2 The designers upload their TIM-level models to the common Model
Repository Server. The members of the service implementation team (analysts,
designers, developers and other personnel) all have access to the Model Repository,
which is used as a collaboration tool and online repository.

Step 3 The developer retrieves the models from the Model Repository. Two meth-
ods are provided, both relying on the Model Repository API: either through the
Model Repository View, or Model Repository Interoperability Wizards.

Step 4 The developer works on transforming the TIM-level model into a TSM-
level model, and producing the web service code. UML tools are used to edit and
enrich the model with technology-specific semantics. Code is then generated from
the TSM via the Code Generator. The source code is edited, filled in, debugged and
tested using conventional Code Development Tools, to produce executables artefacts
(web services).

Step 5 Once the web service is ready for deployment, the developer deploys the
web service to the Deployment Server using the Web service Management compo-
nent, and registers the web service with the SOA Service Management Infrastruc-
ture via the SOA Service Management Integration component.

Step 6 The web service is deployed, registered with the SOA infrastructure and is
ready for use by business processes or as a standalone service.

During the process, the developer is able to access the Model Repository Server
through the Model Repository interoperability components at any time. The devel-
oper is able to retrieve and save development artefacts in the Model Repository,
such as models, source code, and documents. As the Model Repository is a common
resource accessible by all stakeholders (e.g. designers, developers, and analysts) it
can also be used as team collaboration tool.

5.3.2 Behavioural workflow

The behavioural workflow aims to use TIM-level models of business processes to
produce TSM-level models and, finally, executable business process descriptions.
Figure 9 illustrates the architectural components used in the behavioural workflow,
organised along the steps of the process.

Moving through the steps of the behavioural workflow, the components of the
GSDP architecture participate as follows:

www.manaraa.com

709

1 3

A model‑driven software engineering workflow and tool…

Step 1 TIM Modelling: TIM behavioural modelling for business processes takes
place outside the GSDP, by service designers, business analysts and other users, as
in the structural workflow.

Step 2 The designers upload their TIM-level models to the common Model
Repository Server.

Step 3 The developer retrieves the behavioural business process models from the
Model Repository, similarly to the structural workflow.

Step 4 The developer works on transforming the TIM model into a TSM model
i.e. an executable BPMN 2.0 process. The BPMN Design and Enrichment Tool
is used to edit the model and enrich it with technology-specific elements. During
this process, the Developer may search for suitable service components already

GSDP Behavioural Workflow
Components

GSDP Interoperability Components

GSDP Structural Workflow Components

Graphical User Interface and User Workspace Management

Code
Generator

Web service
Management

Model
Repository

Server

UML Design
and

Enrichment
Tools

SOA Service
Management
Infrastructure

Code
Development

Tools

MR Interop.
Wizards

SOA Service
Management

Integration

BPM Runtime
Environment /

Execution
Engine

Generic Service Development Platform IDE

BPM
Integration

Model Rep.
Client API

Model Rep.
View

TIM Modelling

Model Rep.
Client API

Model Rep.
View Service

Depl.
Server

Service
Deployment
Interaction

Service
Registration /

Service
Discovery

Business Process
Deployment
Interaction

Repository
Client API

Access

Repository
Access

GSDP
User

Repository
Access

BPMN
Design and
Enrichment

Tool

Business
Process

Deployment
Staging

12

3

4

5

6

Service
invocation

and

Service invocation
during Business

Process execution

monitoring

Fig. 9 Behavioural workflow as implemented by the components of the GSDP architecture, organised in
steps

www.manaraa.com

710 E. Ntanos et al.

1 3

registered with the IT infrastructure of the service system. The SOA Service Man-
agement Integration component is used to retrieve service descriptions from the
SOA Service Management Infrastructure. Then, the Business Process Deployment
Staging component is used to prepare the finished BPMN process for deployment
to the Business Process Management (BPM) Runtime environment of the service
system IT infrastructure.

Step 5 The BPM Integration component interoperates with the BPM Runtime
Environment and deploys the business process to the IT infrastructure.

Step 6 The Business Process has been deployed and can be used by the service
end users.

Again, as with the structural workflow, the developer can save and retrieve inter-
mediate products of the behavioural workflow (models, business rules, documents,
and other artefacts) in the Model Repository, and use it as a collaboration platform
with other stakeholders.

5.3.3 Application example

In the example of the heat pump manufacturer, the service is to be provided by a
SOA-style system, powered by a BPM infrastructure. The design of the new service
system is based on the MDSEA method, having produced models for the various
aspects (physical, organisational and IT). The IT-track models describe mostly the
entities in the service system and their relations (a structural diagram of actors and
resources) and business processes performed by some or all of these entities (behav-
ioural). The developers discuss these requirements with business-oriented personnel
(from the firm, network partners or external consultants) who have provided these
high-level models. The stakeholders exchange updated models and other material
through the common model repository. The developers begin the development of
service software using the TIM-TSM-executable process described using the inte-
grated tools of the GSDP. The web services and other software produced this way is
used support technology-specific business process orchestrations implementing the
service provision. The developers deploy the web services, stand-alone software and
business processes to the service system IT infrastructure, i.e. the deployment serv-
ers, the SOA service management infrastructure and the business process runtime
environment. The integration with the IT infrastructure enables streamlined test-
ing and deployment. When a competitor starts providing a similar service, business
stakeholders produce a model of an updated version of the service system, which is
quickly implemented, tested and put into operation.

6 Evaluation

The methods and tools described in the previous sections were evaluated in the con-
text of the MSEE project. A prototype Integrated Development Environment was
built and tested in a set of pilots undertaken in cooperation with industrial partners.
The performance of the methodology and application was discussed with participat-
ing software engineers.

www.manaraa.com

711

1 3

A model‑driven software engineering workflow and tool…

6.1 Evaluation approach

At the pre-implementation stage, a software architecture can be evaluated using
various qualitative or qualitative methods, measuring specific quality attributes.
These include non-functional characteristics of the system, such as reliability,
maintainability or flexibility. Qualitative approaches include “questioning” tech-
niques where stakeholders discuss the architectures and the results are processed
with a semi-formal framework (Dobrica and Niemela 2002). For example, meth-
ods such as the Software Architecture Analysis Method (SAAM) and the Perfor-
mance Assessment of Software Architecture (PASA) involve the assessment of
the attributes of the architecture by stakeholders with regards to specific usage
scenarios (Babar and Gorton 2004). “Measuring” techniques are based on quanti-
tative measurements of specific qualities of the architecture, employing a formal
approach to calculate specific metrics. For example, object-oriented designs can
be evaluated in terms of a number of formally derived metrics (such as the “cou-
pling between object classes” or the “lack of cohesion in methods”) (Chidamber
and Kemerer 1994). Derived metrics can help predict attributes such as software
quality (Basili and Briand 1996) or security (Chowdhury and Zulkernine 2011).

However, research in software systems can also be evaluated against its claims
of contribution to the state-of-the-art (Munzner 2006). Ellis and Dix (2006)
argued that the purpose of the evaluation should be to test if and when the system
works or is useful for its intended goal (i.e. relevant to the problem statement). In
the case of the GSDP IDE and the proposed methodology, the research is driven
not by a technical but by a business concern: the successful development of Prod-
uct-Service System for servitised manufacturing, through the technical facilita-
tion of this process. Therefore, it was decided that the evaluation of the system
should focus on how the new tools and way of working affected the process of
software development in three areas: team collaboration, developer productivity
and code quality. The topics were chosen as they are linked to the business con-
cerns outlined in the previous sections. Team collaboration is an important ele-
ment for the development of service systems, developer productivity is related to
the time required to deploy an application, and code quality is linked to both the
time required to test and fix bugs, as well as the quality of the end service.

The MSEE industrial pilots provided an opportunity to assess this contribution.
They were focused on the strategic, business and technical aspects of conceiving,
developing and implementing novel services in manufacturing Product-Service
Systems. In order to support the pilot activities, the project partners would design
and develop the basic elements of a service provision IT infrastructure based on
SOA and BPM principles. These would include IT tools supporting the design,
development and provision of services to partners and customers of servitised
manufacturing firms, including the GSDP IDE and elements of its system context.

Depending on the specifics of each PSS development pilot, the GSDP IDE
would be used by software engineers from the participating manufacturing firms
or from other project partners specializing in software development. Therefore,
these stakeholders would be able to provide an assessment of the contribution of

www.manaraa.com

712 E. Ntanos et al.

1 3

the proposed methodology and tools, based on their experiences from using them,
and their knowledge of the manufacturing or software engineering domain.

It was decided to elicit this assessment through semi-structured interviews. This
approach was chosen as there are inherent difficulties in evaluating IDE usabil-
ity: there is significant complexity of interaction between user traits, systems and
application domains (Budgen and Thomson 2003). Standardised questionnaires, in
this context, would not be able to reflect these complex interactions in a meaning-
ful way, contributing to the challenges in IDE evaluation (Kline and Seffah 2005).
This is further complicated by the fact that the GSDP IDE introduces new methods
and interactions with other stages of the service provision workflow with potentially
unanticipated effects. In order to understand the impact of an information system to
an organisation and its stakeholders, we need to take into account the complexity of
interactions in real-world settings. In these situations, interpretative and qualitative
research methods may provide new insights such as highlighting issues and vari-
ables not anticipated by the researchers (Galliers 1990).

6.2 Prototype Integrated Development Environment

The GSDP IDE prototype environment was implemented according to the refer-
ence architecture described in the previous sections. The main IDE was based on the
Eclipse Juno SR2 platform (v.4.2.2), using existing Eclipse functionality whenever
available, (e.g. Java development, GUI, and user workspace management), as well as
a set of specialized plugins (UML and BPMN editing, Code generation, etc.). The
plugins were either custom-built for the prototype or based on existing open-source
software (Table 4). Additional integration work ensured that the IDE supported the
proposed workflows, from modelling to executables, within a single development
environment.

Table 4 Components used for the implementation of GSDP IDE functionalities

Functionality Underlying technology

Model editing (UML) Papyrus UML (Lanusse et al. 2009)
Model editing (BPMN) Activiti designer (Rademakers 2012)
Model enrichment (UML) Custom UML Java profile (adapted from Papyrus UML)
Model enrichment (BPMN) Java and business archive (.BAR) support (provided by

Activiti)
Referencing external services Eclipse Webtools (Dai et al. 2007)
Automatic code generation (TSM-to-code) Acceleo plugin (Eclipse Foundation 2006) with custom

transformation profile in the MOF Model-to-text
Language (Object Management Group 2008)

Automatic code generation (WSDL-to-code) Eclipse Webtools (Dai et al. 2007)
Service registration and discovery Custom service registration and discovery wizards
Model repository access Custom import wizard and graphical, point-and-click

model repository view
Business process deployment Custom business process deployment wizard

www.manaraa.com

713

1 3

A model‑driven software engineering workflow and tool…

The Model Repository was developed as a separate network resource, com-
monly accessible as a server by all GSDP users. Software developers, technology
designers and business analysts had access used the MR for exchanging and stor-
ing development artefacts (e.g. models and code). The Model Repository func-
tionality was based on the WebDAV protocol (Whitehead and Wiggins 1998).

Relevant to the proposed software development process and IDE, both “input”
and “output” systems were implemented by the project partners. Specifically, the
service system structure and behaviour were to be modelled by business analysts
in UML and BPMN using a specialised modelling tool based on MDSEA (Bazoun
et al. 2014; Boyé and Bazoun 2014), to be provided to developers as input for the
workflow supported by the prototype GSDP IDE. Web services developed in the
GSDP were to be registered with a SOA service delivery platform of the IT infra-
structure. The delivery infrastructure also provided functionality for the discov-
ery of services during development activities (Toma et al. 2014).

6.3 Evaluation process

The technical assets developed as a result of research in the MSEE project were
deployed in its four pilot applications of manufacturing product-service systems.
The prototype GSDP IDE was applied in three of those. In two cases, the GSDP
IDE was tested in parallel with traditional methods in the development of ser-
vice applications. These included software for Smart TV sets and for on demand,
personalised, garment manufacturing. For each of those cases, the GSDP IDE
was tested in the creation of web services, service compositions and user inter-
face elements. In the third case, the GSDP IDE was used as part of a prototype
“Mobile Development Platform” for service provision through mobile devices.
In this case the Mobile Development Platform was used to implement the mobile
device component of a remote monitoring application for washing machines.

Nine software engineers from the project partners were asked to evaluate the
contribution of the prototype platform in a set of semi-structured interviews. Indi-
viduals that participated in the design or development of the proposed method-
ology and the GSDP IDE were excluded from the study. The participants were
asked about their experiences and opinions of the GSDP via telephone or web tel-
econferencing. Interviews were one-on-one, and lasted about thirty minutes each.
At the beginning of the discussion, the participants were informed of the general
scope of the study (i.e. “An assessment of the GSDP as a tool for service sys-
tem design in manufacturing”). Then, the experts were asked three open-ended
questions:

• Q1: “How did the GSDP IDE affect collaboration and during service develop-
ment?”

• Q2: “How did the GSDP IDE affect in developer productivity and develop-
ment time?”

• Q3: “How did the GSDP IDE affect the quality of the code produced?”

www.manaraa.com

714 E. Ntanos et al.

1 3

The interviewer provided minimal direction during the interview (e.g. clarifica-
tions or steering the discussion back to the topic), and the participants were allowed
to freely expand on their opinions.

6.4 Results

Regarding Q1, the participants commented that the model-driven workflow of the
GSDP IDE had improved communication with service and technology designers, as
well as other personnel involved in the implementation of the new service system.
This effect was attributed to the following factors:

• Various architectural features supported better collaboration and communica-
tion. The model repository provided access to a common workspace with service
designers. The runtime integration streamlined the feedback loop of software
deployment, evaluation by business stakeholders, service design improvements,
software modifications and re-deployment to the production environment.

• The MDSEA process formalises the requirements documentation process and
their transmission for the multiple stakeholders involved, and establishes a coop-
eration framework by using common conventions (modelling, language, termi-
nology).

• TIM and PSM models are expressed in the same language (UML, BPMN) at
all levels. Modellers at the TIM level can understand the proposed PSM models
while developers can point out deficiencies of the concepts in the TIM models.
Both can contribute meaningfully to the finalised software design.

• Both structural and behavioural elements of the service system are modelled
within the same process and toolset. Service designers and software developers
can, therefore, work with a more complete picture of the service system.

• Previous stages of the MDSEA process consider several aspects of the service
system, including strategic, operational and service governance issues. Despite
focusing on the IT aspects of the service system, the design input for GSDP
users is a result of this “holistic” approach. This contributes to better alignment
between business goals and software products.

• Finally, the use of formal modelling supports the documentation and traceability
of the development process. TIM and PSM models are an abstracted view of the
software under development, which can be easily referenced or communicated to
other team members.

However, regarding Q2 and Q3, the participants noted that there were no major
effects on code quality and development productivity. The improved communica-
tion of requirements did not significantly affect the number of faults. Also, actual
development time was not shorter compared to traditional methods. Even with the
tools provided, a significant part of development still relied on developer effort. For
example, the TIM-to-TSM-executable transformation can only be automated to an
extent, as each step requires the addition of further information and elaboration of

www.manaraa.com

715

1 3

A model‑driven software engineering workflow and tool…

the models and software assets, while filling in the generated code templates must
be done manually.

7 Conclusion

IT is a core enabler of servitisation in manufacturing and an important element in
the provision of advanced services. However, there is no research considering the
context, methods and tools for software development in manufacturing product-
service system applications. Responding to this gap, we have explored the context
of software engineering in product-service systems, proposed a model-driven soft-
ware development workflow, and relevant software development tools based on the
MDSEA framework. Also, we have described an architecture for a development
platform implementing this workflow, the Generic Service Development Platform
(GSDP). The methodology and IDE was evaluated during in a set of pilots, in col-
laboration with manufacturing industry partners. Feedback was collected from soft-
ware engineers, showing that the model driven workflow and toolset improved com-
munication between designers and developers, as well as business-IT alignment.

The results indicate that the proposed methodology and tools could be beneficial
when applied to the collaborative, multidisciplinary environment of software devel-
opment for manufacturing product-service systems. The model-driven aspects of the
methodology provide a common language for all stakeholders involved, and support
the comprehensive modelling of the service system. The associated integrated tools
provide a seamless development environment for all stages of the process, as well
as a collaboration framework for developers, business analysts and other personnel.
Finally, while the proposed methodology and toolset were developed to cover the
needs of servitisation in manufacturing, they are generic enough to be adapted to
servitisation in other industrial or commercial domains.

We have identified several avenues for future research, focusing on improving
the proposed workflows and tools, and expanding their scope of application. First
of all, structural descriptions of a domain or service system can help produce data-
base schemas, forming the basis of adaptations to the relevant workflow (e.g. a data-
oriented branch leading to SQL for creating a database) and associated tools. Addi-
tionally, a promising line of research would involve investigating ways to include a
greater range of behavioural requirements as well as non-behavioural requirements.
As manufacturing organisations operate within well-defined application domains,
the workload involved in the manual annotation of TIM models could be reduced by
re-using TSM-level artefacts (e.g. pre-enriched classes), designing specialised UML
profiles or using technology-specific meta-models for specific manufacturing fields.
The service metamodel introduced by the Unified Service Description Language
(USDL) (Cardoso et al. 2010) could also be investigated as a framework for TSM-
level models. Additionally, domain-specific metamodels, such as those derived from
Health Level 7 (HL7) are compatible with the methodology presented and could
be investigated during its application in different domains. Moving away from the
linear “waterfall” development process assumed by both MDSEA and MDA would
require investigating ways to support more iterative or agile software development

www.manaraa.com

716 E. Ntanos et al.

1 3

approaches (e.g. through change management). Practical “Round-trip engineering”
and the consistency of models across modelling levels is also a very critical research
question. Finally, target technologies beyond object-orientation and BPM require
exploration of different modelling languages and transformations.

Acknowledgements This work has been partly funded by the European Commission through the Euro-
pean Commission’s 7th Framework Programme and the “Factories of the Future-ICT” Project “MSEE:
Manufacturing SErvice Ecosystem” (Grant No. 284860). Early results have been presented in technical
reports by the MSEE project (Deliverables D42.1 and D42.2 “Generic Service Development Platform
specifications and architecture”), available online at cordis.europa.eu. The authors thank the MSEE pro-
ject partners for their contribution to this work.

References

Abramovici M, Filos E (2011) Industrial integration of ICT: opportunities for international. J Intell
Manuf 22(5):717–724

Acerbis R, Bongio A, Brambilla M, Butti S (2007) WebRatio 5: an Eclipse-based CASE tool for engi-
neering Web applications. In: 7th international conference, ICWE 2007 Como, Italy, July 16-20,
2007 proceedings. Springer, Berlin, pp 501–505

Acerbis R, Bongio A, Brambilla M, Butti S, Ceri S, Fraternali P (2008) Web applications design and
development with WebML and Webratio 5.0. In: Paige RF, Meyer B (eds) Objects, components,
models and patterns. Springer, Berlin, pp 392–411

Agostinho C, Bazoun H, Zacharewicz G, Ducq Y, Boye H, Jardim-Goncalves R (2014) Information mod-
els and transformation principles applied to servitization of manufacturing and service systems
design. In: 2014 2nd international conference on model-driven engineering and software develop-
ment (MODELSWARD), pp 657–665

Aguilar-Savén RS (2004) Business process modelling: review and framework. Int J Prod Econ
90(2):129–149

Aho P, Mäki M, Pakkala D, Ovaska E (2009) MDA-based tool chain for web services development. In:
Proceedings of the 4th workshop on emerging web services technology. ACM, pp 11–18

Almeida JP, Iacob M-E, Jonkers H, Lankhorst M, van Leeuwen D (2007) An integrated model-driven
service engineering environment. In: Doumeingts G, Müller J, Morel G, Vallespir B (eds) Enter-
prise interoperability. Springer, London, pp 79–89

Ameller D, Burgués X, Collell O, Costal D, Franch X, Papazoglou MP (2015) Development of service-
oriented architectures using model-driven development: a mapping study. Inf Softw Technol
62:42–66

Anzböck R, Dustdar S (2005) Semi-automatic generation of web services and BPEL processes—a model-
driven approach. In: van der Aalst MW, Benatallah B, Casati F, Curbera F (eds) Business process
management. BPM 2005. Lecture notes in computer science, vol 3649. Springer, Berlin, pp 64–79

Aurich JC, Fuchs C, Wagenknecht C (2006) Life cycle oriented design of technical product-service sys-
tems. J Clean Prod 14(17):1480–1494

Autili M, Di Ruscio D, Di Salle A, Inverardi P, Tivoli M (2013). A model-based synthesis process for
choreography realizability enforcement. In: Proceedings of fundamental approaches to software
engineering, 16th international conference, FASE 2013, held as part of the European joint confer-
ences on theory and practice of software, ETAPS 2013, Rome, Italy, March 16–24, 2013, pp 37–52

Babar MA, Gorton I (2004) Comparison of scenario-based software architecture evaluation methods. In:
Software engineering conference, 2004. 11th Asia-Pacific. IEEE, pp 600–607

Bartol N (2014) Cyber supply chain security practices DNA—filling in the puzzle using a diverse set of
disciplines. Technovation 34(7):354–361

Basili VR, Briand LC (1996) A validation of object-oriented design metrics as quality indicators. IEEE
Trans Software Eng 22(10):751–761

Bazoun H, Zacharewicz G, Ducq Y, Boyé H (2014) SLMToolBox: an implementation of MDSEA for
servitisation and enterprise interoperability. In: Mertins K, Bénaben F, Poler R, Bourrières J-P
(eds) Enterprise interoperability VI. Springer, Berlin, pp 101–111

www.manaraa.com

717

1 3

A model‑driven software engineering workflow and tool…

Becker J, Beverungen DF, Knackstedt R (2010) The challenge of conceptual modeling for product–ser-
vice systems: status-quo and perspectives for reference models and modeling languages. IseB
8(1):33–66

Ben Hamida A, Kon F, Oliva GA, Dos Santos CE, Lorre JP, Autili M, De Angelis G, Zarras A, Georgan-
tas N, Issarny V, Bertolino A (2012) An integrated development and runtime environment for the
future internet. In: Álvarez F et al (eds) The future Internet. Springer, Berlin, pp 81–92

Bercovici A, Fournier F, Wecker AJ (2008) From business architecture to SOA realization using MDD.
In: Bercovici A, Fournier F, Wecker AJ (eds) Proceedings of model driven architecture—founda-
tions and applications, 4th European conference, ECMDA-FA 2008, Berlin, Germany, June 9–13,
2008, pp 381–392

Berkovich M, Leimeister JM, Krcmar H (2009) Suitability of product development methods for hybrid
products as bundles of classic products, software and service elements. In: ASME 2009—interna-
tional design engineering technical conferences & computers and information in engineering con-
ference IDETC/CIE. San Diego, USA

Berkovich M, Leimeister J, Krcmar H (2011) Requirements engineering for product service systems. Bus
Inf Syst Eng 3(6):369–380

Berkovich M, Leimeister JM, Hoffmann A, Krcmar H (2014) A requirements data model for product ser-
vice systems. Requirements Eng 19(2):161–186

Bikfalvi A, Lay G, Maloca S, Waser BR (2013) Servitization and networking: large-scale survey findings
on product-related services. Serv Bus 7(1):61–82

Boehm M, Thomas O (2013) Looking beyond the rim of one’s teacup: a multidisciplinary literature
review of product-service systems in information systems, business management, and engineering
& design. J Clean Prod 51:245–260

Boyé H, Bazoun H (2014) Service life-cycle management tool box. In: Wiesner S, Guglielmina C, Gus-
meroli S, Doumeingts G (eds) Manufacturing service ecosystem: achievements of the European
7th framework programme FoF-ICT project MSEE: manufacturing service ecosystem (Grant No.
284860), pp 60–66

Brax S, Visintin F (2016) Meta-model of servitization: the integrative profiling approach. Ind Mark Man-
age. https ://doi.org/10.1016/j.indma rman.2016.04.014

Broy M, Feilkas M, Herrmannsdoerfer M, Merenda S, Ratiu D (2010) Seamless model-based develop-
ment: from isolated tools to integrated model engineering environments. Proc IEEE 98(4):526–545

Budgen D, Thomson M (2003) CASE tool evaluation: experiences from an empirical study. J Syst Softw
67(2):55–75

Cardoso J, Barros A, May N, Kylau U (2010) Towards a unified service description language for the
internet of services: requirements and first developments. In: 2010 IEEE international conference
on services computing (SCC). IEEE, pp 602–609

Cavalieri S, Pezzota G (2012) Product-service sytems engineering: state of the art and research chal-
lenges. Comput Ind 63(4):278–288

Chae BK (2014) A complexity theory approach to IT-enabled services (IESs) and service innovation:
business analytics as an illustration of IES. Decis Support Syst 57:1–10

Chen D, Ducq Y, Doumeingts G, Zachariewicz G, Alix T (2012) A model driven approach for the mod-
eling of services in virtual enterprise. In: Zelm M, Sanchis R, Poler R, Doumeingts G (eds) Enter-
prise interoperability: I-ESA’12 proceedings, pp 181–187

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Software Eng
20(6):476–493

Chowdhury I, Zulkernine M (2011) Using complexity, coupling, and cohesion metrics as early indicators
of vulnerabilities. J Syst Architect 57(3):294–313

Correia A, Stokic D, Siafaka R, Scholze S (2017) Ontology for collaborative development of product
service systems based on basic formal ontology. In: 2017 international conference on engineering,
technology and innovation (ICE/ITMC). IEEE, pp 1214–1221

Dai N, Mandel L, Ryman A (2007) Eclipse Web tools platform: developing Java Web applications. Pear-
son Education, Bloemfontein

Daniele LM, Pires LF, Van Sinderen M (2009a) An MDA-based approach for behaviour modelling of
context-aware mobile applications. In: Paige RF, Hartman A., Rensink A (eds) Model driven archi-
tecture-foundations and applications. Springer, Berlin, pp 206–220

Daniele LM, Silva E, Pires LF, van Sinderen M (2009b) A SOA-based platform-specific framework for
context-aware mobile applications. In: Poler R, van Sinderen M, Sanchis R (eds) Enterprise inter-
operability, pp 25–37

https://doi.org/10.1016/j.indmarman.2016.04.014

www.manaraa.com

718 E. Ntanos et al.

1 3

De Castro V, Marcos E, Wieringa R (2009) Towards a service-oriented MDA-based approach to the
alignment of business processes with IT systems: from the business model to a web service compo-
sition model. Int J Coop Inf Syst 18(02):225–260

Dickerson CE, Mavris DN (2009) Architecture and principles of systems engineering. Auerbach Publica-
tions, Boca Raton

Dobrica L, Niemela E (2002) A survey on software architecture analysis methods. IEEE Trans Software
Eng 28(7):638–653

Ducq Y, Chen D, Alix T (2012) Principles of servitization and definition of an architecture for model
driven service system engineering. In: van Sinderen M, Johnson P, Xu X, Doumeingts G (eds)
Enterprise interoperability, pp 117–128

Ducq Y, Agostinho C, Chen D, Zacharewicz G, Jardim-Goncalves R (2014) Generic methodology for
service engineering based on service modelling and model transformation. In: Wiesner S, Gug-
lielmina C, Gusmeroli S, Doumeingts G (eds) Manufacturing service ecosystem: achievements of
the European 7th framework programme FoF-ICT project MSEE: manufacturing SErvice ecosys-
tem (Grant No. 284860), pp 41–49

Eclipse Foundation (2005) Eclipse platform. Retrieved from http://www.eclip se.org. 11 Nov 2016
Eclipse Foundation (2006) Acceleo. Retrieved from https ://www.eclip se.org/accel eo/. Jan 2017
Ellis G, Dix A (2006) An explorative analysis of user evaluation studies in information visualisation. In:

Proceedings of the 2006 AVI workshop on BEyond time and errors: novel evaluation methods for
information visualization. ACM, pp 1–7

Fabra J, Álvarez P, Bañares JA (2011) DENEB: a platform for the development and execution of interop-
erable dynamic Web processes. Concurr Comput Pract Exp 18:2421–2451

Fabra J, De Castro V, Álvarez P, Marcos E (2012) Automatic execution of business process models:
exploiting the benefits of Model-driven Engineering approaches. J Syst Softw 85(3):607–625

Francese R, Risi M, Scanniello G, Tortora G (2015) Model-driven development for multi-platform
mobile applications. In: Product-focused software process improvement, 16th international confer-
ence, PROFES 2015 proceedings. Springer, Switzerland, pp 61–67

Galliers RD (1990) Choosing appropriate information systems research approaches: a revised taxonomy.
In: Proceedings of the IFIP TC8 WG8, 2

Gao J, Yao Y, Zhu VC, Sun L, Lin L (2011) Service-oriented manufacturing: a new product pat-
tern and manufacturing paradigm. J Intell Manuf 22(3):435–446. https ://doi.org/10.1007/s1084
5-009-0301-y

Georgakopoulos D, Hornick M, Sheth A (1995) An overview of workflow management: from process
modeling to workflow automation infrastructure. Distrib Parallel Databases 3(2):119–153

Glushko RJ (2010) Seven contexts for service system design. In: Maglio PP, Kieliszewski C, Spohrer J
(eds) Handbook of service science. Springer, US, pp 219–249

Goldstein SM, Johnston R, Duffy J, Rao J (2002) The service concept: the missing link in service design
research? J Oper Manag 20(2):121–134

Guillén AJ, Crespo A, Macchi M, Gómez J (2016) On the role of prognostics and health management in
advanced maintenance systems. Prod Plan 27(12):991–1004

Haase T, Nagl M (2009) Service-oriented architectures and tool integration. In: Proceedings of the 8th
world congress of chemical engineering. Montreal, Canada

Haase T, Nagl M (2011) Application integration within an integrated design environment. Comput Chem
Eng 35(4):736–747

Haberl W, Herrmannsdoerfer M, Kugele S, Tautschnig M, Wechs M (2010) Seamless model-driven
development put into practice. In: 4th international symposium on leveraging applications, ISoLA
2010, Heraklion, Crete, Greece, October 18–21, 2010. Springer, Berlin, pp 18–32

Health Level Seven International (2017) Introduction to HL7 standards. http://www.hl7.org/imple ment/
stand ards/. Accessed 24 Dec 2017

Huhns MN, Singh MP (2005) Service-oriented computing: key concepts and principles. IEEE Internet
Comput 9(1):75–81

Hutchinson J, Rouncefield M, Whittle J (2011) Model-driven engineering practices in industry. In: 2011
33rd international conference on software engineering (ICSE). IEEE, pp 633–642

Johnson M, Mena C (2008) Supply chain management for servitised products: a multi-industry case
study. Int J Prod Econ 114(1):27–39

Jonkers H, Groenewegen L, Bonsangue M, van Buuren R, Quartel DA, Lankhorst MM, Aldea A (2005)
A language for enterprise modelling. In: Lankhorst MM (ed) Enterprise architecture at work.
Springer, Berlin, Heidelberg, pp 83–113

http://www.eclipse.org
https://www.eclipse.org/acceleo/
https://doi.org/10.1007/s10845-009-0301-y
https://doi.org/10.1007/s10845-009-0301-y
http://www.hl7.org/implement/standards/
http://www.hl7.org/implement/standards/

www.manaraa.com

719

1 3

A model‑driven software engineering workflow and tool…

Kline B, Seffah A (2005) Evaluation of integrated software development environments: challenges and
results from three empirical studies. Int J Hum Comput Stud 63:607–627

Lanusse A, Tanguy Y, Espinoza H, Mraidha C, Gerard S, Tessier P, Schnekenburger R, Dubois H, Terrier
F (2009) Papyrus UML: an open source toolset for MDA. In: Proceedings of the fifth European
conference on model-driven architecture foundations and applications (ECMDA-FA 2009), pp 1–4

Leroux D, Nally M, Hussey K (2006) Rational software architect: a tool for domain-specific modeling.
IBM Syst J 45(3):555–568

Lim CH, Kim KJ (2015) IT-enabled information-intensive services. IT Prof 17(2):26–32
Lim CH, Kim MJ, Heo JY, Kim KJ (2015) Design of informatics-based services in manufacturing indus-

tries: case studies using large vehicle-related databases. J Intell Manuf. https ://doi.org/10.1007/
s1084 5-015-1123-8

Lindström J, Löfstrand M, Karlberg M, Karlsson L (2012) A development process for functional prod-
ucts: hardware, software, service support system and management of operation. Int J Prod Dev
16(3–4):284–303

Lopez DM, Blobel BG (2009) A development framework for semantically interoperable health informa-
tion systems. Int J Med Informatics 78(2):83–103

Maglio PP, Vargo SL, Caswell N, Spohrer J (2009) The service system is the basic abstraction of service
science. IseB 7(4):395–406

Martínez-Garciá A, García-García JA, Escalona MJ, Parra-Calderón CL (2015) Working with the HL7
metamodel in a model driven engineering. J Biomed Inform 57:415–424

Maussang N, Sakao T, Zwolinski P, Brissaud D (2007) A model for designing product-service systems
using functional analysis and agent based model. In: International conference on engineering
design, ICED’07. Paris, France

Meier H, Volker O, Funke B (2011) Industrial product-service systems (IPS). Paradigm shift by mutually
determined products and services. Int J Adv Manuf Technol 52:1175–1191

Metzger D, Niemöller C, Thomas O (2017) Design and demonstration of an engineering method for ser-
vice support systems. IseB 15(4):789–823

Mietinnen S, Rontti S, Kuure E, Lindström A (2012) Realizing design thinking through a service
design process and an innovative prototyping laboratory—introducing Service Innovation Corner
(SINCO). In: Proceedings of the conference on design research society (DRS 2012)

Mikusz M (2014) Towards an understanding of cyber-physical systems as industrial software-product-
service systems. In: Procedia CIRP. Product services systems and value creation. Proceedings of
the 6th CIRP conference on industrial product-service systems, vol 16, pp 385–389

Morelli N (2002) Designing product/service systems: a methodological exploration. Des Issues
18(3):3–17

Mukerji J, Miller J (2003) MDA guide version 1.0.1. The Object Management Group (OMG), Needham
Munzner T (2006) A nested model for visualization design and validation. IEEE Trans Visual Comput

Graphics 15(6):921–928
Neely A (2008) Exploring the financial consequences of the servitization of manufacturing. Oper Manag

Res 1(2):103–118
Neubauer P, Mayerhofer T, Gerti K (2014) Towards integrating modeling and programming languages:

the case of UML and Java. GEMOC 2014, p 23
Nguyen HN, Exner K, Schnürmacher C, Rainer S (2014) Operationalizing IPS2 development process:

a method for realizing IPS2 developments based on process-based project planning. In: Procedia
CIRP 16, pp 217–222

Object Management Group (2008) MOF model to text transformation language specification. Retrieved
from http://www.omg.org/spec/MOFM2 T/About -MOFM2 T/. Jan 2017

Object Management Group (2015) Unified modeling language, version 2.5. http://www.omg.org/spec/
UML/2.5. Accessed 20 July 2017

Olivé A (2007) Conceptual modeling of information systems. Springer, Berlin
Osis J, Asnina E (eds) (2010) Model-driven domain analysis and software development: architectures and

functions. IGI Global, Hershey
Papazoglou MP, Georgakopoulos D (2003, October) Service oriented computing. Commun ACM

46(10):25–28
Pernstål J, Gorschek T, Feldt R, Florén D (2015) Requirements communication and balancing in large-

scale software-intensive product development. Inf Softw Technol 67:44–64
Pezzotta G, Sala R, Pirola F, Campos AR, Margarito A, Correia AT, Fotia S, Mourtzis D (2016) Defi-

nition of a PSS engineering environment: from the theoretical methodology to the platform

https://doi.org/10.1007/s10845-015-1123-8
https://doi.org/10.1007/s10845-015-1123-8
http://www.omg.org/spec/MOFM2T/About-MOFM2T/
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

www.manaraa.com

720 E. Ntanos et al.

1 3

implementation. In: XXI Summer School Francesco Turco 2016-smart manufacturing: new para-
digms for a smarter world, vol 13. AIDI-Italian Association of Industrial Operations Professors,
Naples, pp 97–101

Qu M, Yu S, Chen D, Chu J, Tian B (2016) State-of-the-art of design, evaluation, and operation method-
ologies in product service systems. Comput Ind 77:1–14

Rademakers T (2012) Activiti in action: executable business processes in BPMN 2.0. Manning Publica-
tions Co, New York

Reim W, Parida V, Örtqvist D (2015) Product-service systems (PSS) business models and tactics—a sys-
tematic literature review. J Clean Prod 97:61–75

Rosen M, Lublinsky B, Smith KT, Balcer MJ (2012) Applied SOA: service orietned architecture and
design strategies. Wiley, Hoboken

Rumbaugh J, Jacobson I, Booch G (2004) Unified modeling language reference manual, the. Pearson
Higher Education, Bloemfontein

Saarijärvi H, Grönroos C, Kuusela H (2014) Reverse use of customer data: implications for service-based
business models. J Serv Mark 28(7):529–537

Sheng QZ, Pohlenz S, Yu J, Wong HS, Ngu AH, Maamar Z (2009).ContextServ: a platform for rapid and
flexible development of context-aware web services. In: Proceedings of the 31st international con-
ference on software engineering. IEEE Computer Society, pp 619–622

Skouradaki M, Roller DH, Leymann F, Ferme V, Pautasso C (2015) On the road to benchmarking BPMN
2.0 workflow engines. In: Proceedings of the 6th ACM/SPEC international conference on perfor-
mance engineering. ACM, pp 301–304

Sparx Systems (2016) Enterprise architect. Retrieved from http://www.sparx syste ms.com/. 11 Nov 2016
Stokic D, Correia AT (2015) Context sensitive Web service engineering environment for product exten-

sions in manufacturing industry. In: 7th international conference on advanced service computing.
Nice

Thomas I, Nejmeh BA (1992) Definitions of tool integration for environments. Software 9(2):29–35
Toma I, García JM, Larizgoitia I, Fensel D (2014) A semantically enabled service delivery platform:

an architectural overview. In: Ramanathan R, Raja K (eds) Handbook of research on architectural
trends in service-driven computing. IGI Global, Hershey, pp 181–186

Van Riel AC, Lievens A (2004) New service development in high tech sectors: a decision-making per-
spective. Int J Serv Ind Manag 15(1):72–101

Vandermerwe S, Rada J (1988) Servitization of business; adding value by adding services. Eur Manag J
6(4):314–324

Vargo SL, Maglio PP, Akaka MA (2008) On value and value co-creation: a service systems and service
logic perspective. Eur Manag J 26(3):145–162

Vasantha G, Roy R, Lelah A, Brisaud D (2012) A review of product-service systems design methodolo-
gies. J Eng Des 23(9):635–659

Vogl GW, Weiss BA, Helu M (2016) A review of diagnostic and prognostic capabilities and best prac-
tices for manufacturing. J Intell Manuf. https ://doi.org/10.1007/s1084 5-016-1228-8

Walderhaug S, Stav E, Mikalsen M (2007) The MPOWER tool chain-enabling rapid development of
standards-based and interoperable homecare applications. In: Proceedings of Norsk Informatikk
Konferanse (NIK 2007), pp 103–107

Wallin J, Parida V, Isaksson O (2015) Understanding product-service system innovation capabilities
development for manufacturing companies. J Manuf Technol Manag 26(5):763–787

Wasserman AI (1990) Tool integration in software engineering environments. In: Long F (ed) Software
engineering environments. Springer, Berlin, pp 137–149

White SA (2008) BPMN modeling and reference guide: understanding and using BPMN. Future Strate-
gies Inc, Pompano Beach

Whitehead EJ, Wiggins M (1998) WebDAV: IEFT standard for collaborative authoring on the Web. IEEE
Internet Comput 2(5):34–40

Wirsing M, Hölzl M, Koch N, Mayer P, Schroeder A (2008) Service engineering: the sensoria model
driven approach. In: Proceedings of software engineering research, management and applications
(SERA 2008), pp 20–22

Yu J, Sheng QZ, Swee JK, Han J, Liu C, Noor TH (2015) Model-driven development of adaptive web
service processes with aspects and rules. J Comput Syst Sci 81(3):533–552

Zhao Z, Cai X (2013) Research on modeling framework of product service system based on model driven
architecture. In: The 19th international conference on industrial engineering and engineering man-
agement. Springer, Berlin, pp 1283–1290

http://www.sparxsystems.com/
https://doi.org/10.1007/s10845-016-1228-8

www.manaraa.com

Information Systems & e-Business Management is a copyright of Springer, 2018. All Rights
Reserved.

	A model-driven software engineering workflow and tool architecture for servitised manufacturing
	Abstract
	1 Introduction
	2 Related work
	2.1 Service systems
	2.2 Service-oriented systems and business process management
	2.3 Software engineering tool integration
	2.4 Product service system design methodologies and IT
	2.5 Model driven engineering for service systems: the MDSEA framework
	2.6 Requirements for methods and tools for software development for service provision in manufacturing
	2.7 Model-driven software development methodologies for SOA and BPM with tool support

	3 Research methodology
	4 Model-driven software engineering workflow for product-service systems
	4.1 Generic process
	4.2 Structural workflow
	4.3 Behavioural workflow

	5 Development environment architecture
	5.1 Overview and system context
	5.2 GSDP IDE and model repository server architecture
	5.2.1 Structural workflow components
	5.2.2 Behavioural workflow components
	5.2.3 Integration with the manufacturing service system IT framework
	5.2.3.1 Model Repository Server and access components
	5.2.3.2 SOA Service Management Integration
	5.2.3.3 Web serviceBusiness Process Management

	5.3 Implementing the proposed workflow
	5.3.1 Structural workflow
	5.3.2 Behavioural workflow
	5.3.3 Application example

	6 Evaluation
	6.1 Evaluation approach
	6.2 Prototype Integrated Development Environment
	6.3 Evaluation process
	6.4 Results

	7 Conclusion
	Acknowledgements
	References

